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Case?2: ¥, =X

 Covariance matrices for all of the classes are
identical,

» But covariance matrices are arbitrary.



Case?2: ¥, =X

1 = d 1
g,-(x)=—5(x—,u,-) Z(x—,u,.)—EInZE—Eln

Z|+nP(w,)

d 1 . .
EIHZII and EM\Z}\ are independent of i.

So,

8:(x) = (3~ i) 3 (x— )+ InP(a,)



Case?2: ¥, =X

Discriminant functions are

g:(x) = wix +wy (linear discriminant)
where

w;=X"" Hi

1 \
Wio = =5 pg X7, + In Pwy;).



Case?2: ¥, =X

Decision boundaries can be written as
w’ (x — xg) =0
where

w =" (p; — py)

1 In(P(w;)/ P(w;

(te; — )T (po; — poj)

Hyperplane passes through xg but is not necessarily
orthogonal to the line between the means.



Case?2: ¥, =X

Figure 6: Probability densities with equal but asymmetric Gaussian
distributions. The decision hyperplanes are not necessarily perpendicular to
the line connecting the means.



Case 3: X; = arbitrary
S

 Covariance matrices are different for each
category.



Case 3: X; = arbitrary

1 = d 1
g,-(x)=—5(x—,u,-) Z(x—,u,.)—EInZE—Eln

2

+InP(w,)

d

only EIHZ’I is independent of i.

So,

8u(x) = (5 ) 3 (x— )~ Inl3] +In P(a,)



Case 3: X; = arbitrary

Discriminant functions are

gi(x) =x"W;x +w; x + w0 (quadratic discriminant)

where
. 1
W;=—-%71
2
Wi = Ei-l i
1 | |
Wio = —3 i, — 5 In [32;]| + In P(w;).

Decision boundaries are hyperquadrics.



Case 3: X; = arbitrary

R T !
Figure 7: Arbitrary Gaussian distributions lead to Bayes decision boundaries
that are general hyperquadrics.



Case 3: X; = arbitrary

Figure 8: Arbitrary Gaussian distributions lead to Bayes decision boundaries
that are general hyperquadrics.



EXAMPLE:
L

Consider a two-category classification problem

with two-dimensional feature vector X = (x;, x g}f.

The two categories are w; and @;.

p(X|m)~ N[h}z; J
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P(w,) = P(w,) =

p(X
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EXAMPLE (cont.):
S

Calculate the Bayes decision boundary.



EXAMPLE (cont.):
S

Find the discriminant function for the first class.

gl{x}:—ln{'Zﬁ')—%lnEJ |—%(}—E)rz;' (}—E]

L | 9~
:—1[]{2}1'}—51[]:2!|_E[x|_’u” IE_#IE]EEIL



EXAMPLE (cont.):
S

Find the discriminant function for the first class.

Lo, ] JFe-m
_lﬂ(zﬂ'}—ilﬂ ZI|_E[3‘:|_;H|| Iz_plz]zll ! ||} _

B P Bk
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EXAMPLE (cont.):
S

Similarly, find the discriminant function for the second class.

g:(1) =—=In2m)~In |3, | (%72 ) =3 (-7

- —ln(2;r]—%1n 12, |_%[I| —Hy X _:uzz]z; {ﬂ A —l

Xy — My
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EXAMPLE (cont.):
S

The decision boundary:
g(x) = g,(x)—g,(x)
1 2 3 1 1 )
=—111(2?r)—5(x[‘ £ 20, 4150 —2%; +l)+ln(_2ﬁr)+51n2—1(3xf —6x, +3—4x,x, +4x, + 2x; |
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EXAMPLE (cont.):
S

The decision boundary:

; 1 10 1 1
g(x)=g,(x)—g,(x) =1_}:]2 e +2x, —1+Eln2

=.xf‘—10xl—4x1x2+8x2—1+21n2



EXAMPLE (cont.):
S

Using MATLAB we can draw the decision boundary:

g(x)=x—10x, —4x,x, +8x,—1+2In2

(to draw the decision boundary in MATLAB)
>> s = 'x*"2-10*x-4*x*y+8*y-1+2%*log(2)’;
>> ezplot(s)



EXAMPLE (cont.):
S

Using MATLAB we can draw the decision boundary:

*>-10 x4 x y+8 y-142 log(2) = 0




EXAMPLE (cont.):




Error Probabilities and Integrals

For the two-category case

P(error) = P(x € Ry, w;) + P(x € Ry, ws)
P(x € Ra|w;)P(wy) + P(x € Ry|ws)P(w-)

p(x|wy) P(w) dx + / p(x|ws) P(ws) dx.

R,

Ra



Error Probabilities and Integrals
|

For the multicategory case
P(error) = 1 — P(correct)

=2 I Z P(x € R;, w;)
i—1

- Z P(x € Ri:|w;:) P(w;)

=1
=1-— Z [ﬁ p(x|w;) P(w;) dx.
i—=1 VR



Error Probabilities and Integrals
|
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Figure 9: Components of the probability of error for equal priors and the
non-optimal decision point z*. The optimal point z 5 minimizes the total
shaded area and gives the Bayes error rate.



Receiver Operating Characteristics
|

* Another measure of distance between two
Gaussian distributions.

 found a great use in medicine, radar detection
and other fields.



Receiver Operating Characteristics
|

» Consider the two-category case and define

» wy: target is present,
» woy: target is not present.

Table 1: Confusion matrix.

Assigned
' Wo
w; | correct detection mis-detection
Wo false alarm correct rejection

True

» Mis-detection is also called false negative or Type | error.
» False alarm is also called false positive or Type Il error.



Receiver Operating Characteristics

» If we use a parameter (e.g.,
a threshold) in our :
decision, the plot of these |
rates for different values of |/
the parameter is called the
receiver operating / i

characteristic (ROC) curve. PG> X7tk € ax)
Figure 10: Example receiver
operating characteristic (ROC) curves
for different settings of the system.

Pix>x*kke o)
=¥




Receiver Operating Characteristics
|

Let p; be the probability that patient 1 will get a positive diagnosis (i.e., the patient is
ill) and ¢; be patient i's probability of a positive test. The prevalence. P. of the positive
diagnosis in the population? is theoretically P = mean(p;). The level of the test, (), is

() =mean(g;). We also define P’=1-Pand Q' =1-0Q.

Test result

Positive  Negative
Diagnosis
Positive TF FN 5
Negative FP TN P’
@ Q' 1




Receiver Operating Characteristics
|

* If both diagnosis and test are positive, it is called
a true positive. The probability of a TP to occur is
estimated by counting the true positives in the
sample and divide by the sample size.

* If the diagnosis is positive and the test is negative
it is called a false negative (FN).

* False positive (FP) and true negative (TN) are
defined similarly.



Receiver Operating Characteristics
|

* The values described are used to calculate
different measurements of the quality of the test.
*The first one is sensitivity, SE, which is the
probability of having a positive test among the
patients who have a positive diagnosis.

SE = TP/(TP + FN) = TP/P.



Receiver Operating Characteristics

« Specificity, SP, is the probability of having a
negative test among the patients who have a
negative diagnosis.

SP = TN/(FP + TN) = TN/P'.



Receiver Operating Characteristics
|

* Example:

+ ~ _ o —
o ¥ =4 Pl "'_':' o +_+-
T s
+ - R - = + =
= 4= _+ - + =

Figure 1.1: A sample population of V = 93 patients. The minus signs denote patients
with a negative diagnosis and the plus signs denotes patients with a positive diagnosis.
The colour shows the result of a test. White is a negative test and black i1s a positive test.



Receiver Operating Characteristics

« Example (cont.):

TP
FN
FP
TN

30/95
3/95

20/95
42 /95

=Diagnosis
Positive

Negative

0.316(=(
0.032(=(

0.211 (=

0.442(L

'\-—-"

\-—-"'\-—-'l

'\-—-"

|
:|
A
(.

)48)
)18)
)42)

)51)

Positive  Negative

30 3 33

20) 42 62

5() 45 95

P = 33/95 = 0.347(X0.049)
Q = 50/95 = 0.526(=0.051)
SE = 30/33 = 0.909(%0.050)
SP = 42/62 = 0.677(=0.059)



Receiver Operating Characteristics

» Overlap in distributions: 0.4
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Bayes Decision Theory — Discrete
Features

e Assume x = (x1....... xd) takes only m discrete
values

e Components of x are binary or integer valued,
X can take only one of m discrete values

Viy Vo ooy Vi



Bayes Decision Theory — Discrete
Features (Decision Strategy)

e Maximize class posterior using bayes
decision rule

Plw,[x) = Pix]®). P (w;)
ZP(x]|w). P (a)
Decide w;if Pf(w; [ Xx) > P(w;[Xx) foralli =/
or
e Minimize the overall risk by selecting the
action «; = a. .- deciding o,
a. = arg min R(«; [ x)




Bayes Decision Theory — Discrete
Features (Independent binary features

in 2-catego=¥ Broblemz

Here, we consider a Z-categaory problem in which the compaonents of the feature vector are binary-valued and
conditionally independent (which yields a simplified decision rule):

r=(ry.....2q)" el 0.1
We also assign the following probabilities (p and g) to each x;in X:

[ = l]'l'[;l.'i = 1|.'L,_.'1] and 0 = l}l'[:l.’" = ]|,-L,_,x3]



Bayes Decision Theory — Discrete
Features (Independent binary features

in 2-catego=¥ Broblemz

If p; > g;, we expect to x; to be 1 more frequently when the state of nature s w than when it is wo. If we
assume conditional independence, we can write P(X|w;) as the product of probabilities for the components of
X. The class conditional probabilities are then:

i
Plxfur) = [[ (1= pa)'
i=1

==

I"{x|m;}=H (1-g



Bayes Decision Theory — Discrete
Features (Independent binary features

in 2-cateﬁo¥ ﬁroblem‘

Since this is a two class problem the discniminant function g(x) = g(x) - ga2(x) where:

gi(z) = log [p(x|wr )plwn )] gng g2(x) = log [p(x|ws Jplws )



Bayes Decision Theory — Discrete
Features (Independent binary features

in 2-catego§¥ Eroblem)

The likelihood ratio is therefore given by:
, il T ] —r;
I{K|QJ'1}_H(E) (l_ﬁ'i)
Px|ws) ~ 1i\g ) \1-g¢

which yields the discriminant function as follows:

b od 'ir . Y
ii::&; Z [I lu— (1 —x; }llui }] + lu Plw)

i1 s — i w2 )

|_|.

gla) = In

"'-1



Bayes Decision Theory — Discrete
Features (Independent binary features

in 2-catego§¥ Eroblem)

If we notice that this function is linear in x;, we can rewrte it as a linear function of x;

where

and




Bayes Decision Theory — Discrete
Features (Independent binary features

in 2-catego§¥ Erobleml

The discriminant function g(x) will therefore indicate whether the current feature vector belongs to class 1 and
class 2. It i1s important to note that wg and w; are weights calculated for the linear discniminant. A decision

boundary lies wherever g(x) = 0. This decision boundary can be a line, or hyper-plane depending upon the
dimension of the feature space.

X3

‘flk

.ﬂ‘f

X, A

Class |

Class 2

X X
]
The decision boundry g{x) = 0 15 a line on a cartesian In a three dimensional feature space, the decision
plan for a two dimensional (d = 2) feature space. boundary gix) = 0 is a plane,



Bayes Decision Theory — Discrete
Features (Independent binary features

in 2-cateﬂo=¥ Brobleml EXAMPLE

Let's consider a three dimensional binary feature vector X=(x4,x2,x3) = (0,1,1) that we will attempt to classify
with one of the following classes:

i&ﬂ ; s
Class 1 Class?

and lets say that the prior probability for class 1is Flws)= 0.6 while for class 2 is Pws)= 0.4. Hence, it is
already evident that there is a bias towards class 1.



Bayes Decision Theory — Discrete
Features (Independent binary features

in 2-catego=¥ Brobleml EXAMPLE

Addtionally, we know that likelihoods of each independent feature is given by p and g where:
pi = Plxi=Tlwy) and g; = Plxj=1ws)

meaning that we know the probability (or likelihood) of each independent feature given each class - these
values are known and given:

p=1{0602 05 andg={02 05, 05



Bayes Decision Theory — Discrete
Features (Independent binary features

in 2-catego§¥ Eroblem) EXAMPLE

therefore, the discriminant function is g(x) = g(x) - g2(x) or by taking the log of both sides:

plx|wa) +log Pl )

glax) = log
p{x|ews ) pluws )

however, since the problem definition assumes that X is independent, the discriminant function can be
calculated by:

i
qla) = Z TIRE s o TH
i=1
with
i 1 — i :
wi(ax) = I pil %) t=1..... (l

ri'J'{ 1 — i ]'



Bayes Decision Theory — Discrete
Features (Independent binary features

in 2-cateﬂo=¥ Erobleml EXAMPLE

pill —qi) .
wilz) = ln=— oi=1..... il
q‘-{l - 1""'1'}
0.8(1—-0.2 —— 0.2(1—0.5 0.5(1—0.9
ury = In 22— 9 7T s = ln 2.201=8.9) _ —1.3%:305 = In Dol B~ 9219

0.2{1-0).8)

0.6 1 —0.8 1 —10.2 1 —0.5
o=In{— ] +1 1 1 — 1.0986
. “({}.4) * “(1 —u.z) * “(1 —u.r;) * “(1 —u.s?s) ’

gla) = 27Ty — 1390, — 21925 + 1.0986

0.5(1=0.2) — 0.9(1=0.5) —




Bayes Decision Theory — Discrete
Features (Independent binary features

in 2-categog¥ Erobleml EXAMPLE

After inputting the x; values into the discriminant function, the answer g(x) = -2.4849. Therefore this belongs to
class 2. Below is a plot of the decision boundary surface.

Decision boundary

1.5

X=
-fﬂ, 1,1)

i 2(X)=0

0.5
0.5 o
0

0.5

X2 ’ " X1

All points above the plane belong to class w2z since iIf X = (0,1,1), g(x) = -2.4849 < 0.



APPLICATION EXAMPLE

Bit — matrix for machine — printed characters

0
Here, each pixel may be taken as a feature Xz d=10x10=100
For above problem, we have

p . isthe probabilty that X, =1 forletter A,B,...



Summary
|

*To minimize the overall risk, choose the action that
minimizes the conditional risk R (a |x).

*To minimize the probability of error, choose the class that
maximizes the posterior probability P (wj |x).

*If there are different penalties for misclassifying patterns
from different classes, the posteriors must be weighted
according to such penalties before taking action.

Do not forget that these decisions are the optimal ones
under the assumption that the “true” values of the
probabilities are known.



